Purely Epistemic Markov Decision Processes

نویسندگان

  • Régis Sabbadin
  • Jérôme Lang
  • Nasolo Ravoanjanahry
چکیده

Planning under uncertainty involves two distinct sources of uncertainty: uncertainty about the effects of actions and uncertainty about the current state of the world. The most widely developed model that deals with both sources of uncertainty is that of Partially Observable Markov Decision Processes (POMDPs). Simplifying POMDPs by getting rid of the second source of uncertainty leads to the well-known framework of fully observable MDPs. Getting rid of the first source of uncertainty leads to a less widely studied framework, namely, decision processes where actions cannot change the state of the world and are only intended to bring some information about the (static) state of the world. Such “purely epistemic” processes are very relevant, since many practical problems (such as diagnosis, database querying, or preference elicitation) fall into this class. However, it is not known whether this specific restriction of POMDP is computationally simpler than POMDPs. In this paper we establish several complexity results for purely epistemic MDPs (EMDPs). We first show that short-horizon policy existence in EMDPs is PSPACE-complete. Then we focus on the specific case of EMDPs with reliable observations and show that in this case, policy existence is “only” NP-complete; however, we show that this problem cannot be approximated with a bounded performance ratio by a polynomial-time algorithm.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Epistemic Foundations of Fuzziness - Unified Theories on Decision-Choice Processes

Why should wait for some days to get or receive the epistemic foundations of fuzziness unified theories on decision choice processes book that you order? Why should you take it if you can get the faster one? You can find the same book that you order right here. This is it the book that you can receive directly after purchasing. This epistemic foundations of fuzziness unified theories on decisio...

متن کامل

Reinforcement Learning in Robust Markov Decision Processes

An important challenge in Markov decision processes is to ensure robustness with respect to unexpected or adversarial system behavior while taking advantage of well-behaving parts of the system. We consider a problem setting where some unknown parts of the state space can have arbitrary transitions while other parts are purely stochastic. We devise an algorithm that is adaptive to potentially a...

متن کامل

Accelerated decomposition techniques for large discounted Markov decision processes

Many hierarchical techniques to solve large Markov decision processes (MDPs) are based on the partition of the state space into strongly connected components (SCCs) that can be classified into some levels. In each level, smaller problems named restricted MDPs are solved, and then these partial solutions are combined to obtain the global solution. In this paper, we first propose a novel algorith...

متن کامل

Separation Properties of Sets of Probability Measures

This paper analyzes independence concepts for sets of probability measures associated with directed acyclic graphs. The paper shows that epistemic independence and the standard Markov condition violate desirable separation properties. The adoption of a contraction condition leads to d-separation but still fails to guarantee a belief separa­ tion property. To overcome this unsatisfac­ tory situa...

متن کامل

The Value of Representing Epistemic Uncertainty in Engineering Design

Engineering design decisions inherently are made under uncertainty. In this paper, we recognize a difference between aleatory uncertainty (due to inherent randomness) and epistemic uncertainty (due to lack of knowledge). Our hypothesis is that, in engineering design decisions, it is valuable to explicitly represent epistemic uncertainty distinctly from aleatory uncertainty. In this paper, we su...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2007